Original Article

Clipless Laparoscopic Cholecystectomy by Ultrasonic

Background: Ultrasonically activated devices have been used in gallbladder dissection in laparoscopic cholecystectomy with encouraging results. The aim of this study was to compare between the safety and efficacy of the harmonic scalpel and the commonly used clip technique in achieving safe closure and division of the cystic duct in alaparoscopic cholecystectomy.

Methods: In this prospective study, 114 patients with chronically inflamed symptomatic gallstone disease were randomly assigned to either a harmonic scalpel laparoscopic cholecystectomy, group (Group1=58 patients) where closure and division of the cystic duct was achieved solely by a harmonic scalpel or by clip laparoscopic cholecystectomy group (Group2=56 patients).

Results: Neither minor nor major bile leaks were encountered in either group (p=0.2). Similarly, no bile-duct injuries were encountered in the present study. The incidence of gallbladder perforation was statistically insignificant (P=0.972). The median operative time was shorter in the group 1 than in the group 2, statistically significant (23 vs. 30 minutes, respectively; P=0.000). No statistically significant difference was found in the incidence of postoperative complications between the two groups.

Conclusions: The harmonic shears are as safe and effective as the commonly used clip technique in achieving safe closure and division of the cystic duct in a laparoscopic cholecystectomy. Further, it provides a superior alternative to the currently used method in terms of shorter operative.

Key words: clip less, laparoscopic cholecystectomy, harmonic scalpel.

Introduction

Laparoscopic cholecystectomy is commonly а performed operation for patients diagnosed with gall stones. The technique of laparoscopic cholecystectomy has areas requiring refinement, complications of clips being dislodged. The use of the ultrasonically activated scalpel, harmonic scalpel for tissue cutting and coagulation is a potential replacement for electrosurgery, which can be related to different complications. The harmonic scalpel was previously used for the division of the cystic artery and liver-bed dissection. Recent advances in harmonic scalpel technology now provide safe division and closure of the cystic duct up to 6 mm in diameter. 1-7. So total Harmonic scalpel dissection in the performance of a laparoscopic cholecystectomy was described.8 The resulting decrease in temperature, smoke, and lateral tissue damage placed the harmonic scalpel in contrast to the effects seen with the more traditional

electrocautery. In addition, the elimination of inadvertent, sometimes unrecognized, electrical arcing

Jahangir Sarwar Khan Usman Qureshi Zahra Fatima Hamid Hassan Muhammmad Mussadiq Khan Muhammad Igbal

Associate Prof of Surgery
Rawalpindi Medical College
Assistant Prof of Surgery
Rawalpindi Medical College
Medical Student Shifa College of
Medicine Islamabad
Professor of Surgery
Rawalpindi Medical College
Prof of Surgery
Rawalpindi Medical College
Dean of Surgery Shifa College of
Medicine
Islamabad

Address for Correspondence Associate Prof of Surgery Rawalpindi Medical College Rawalpindi.

injuries with their potentially hazardous sequelae supported the role of the harmonic scalpel as a potentially safer instrument for tissue dissection. It tackles the concerns regarding smoke production, and inadvertent injuries to the abdominal organs and structures. Moreover, it shortens the operative time and decreases the rate of accidental bile spillage. A single working instrument means avoidance of repeated instrument changes during the operation, as selecting different instruments breaks the natural flow of the operation and may distract the surgeon. This study was undertaken to demonstrate the efficiency, and safety of the Harmonic scalpel as the sole instrument to achieve complete hemo-biliary stasis in the performance of laparoscopic cholecystectomy.

Materials and Methods

Patient population: From July, 2009 to July 2011, a Sample of 144 cases of chronically inflamed symptomatic gall stone disease were included in this

study from Surgical Unit 1, Holy Family Hospital and authors Surgical Clinics.

Clinical and diagnostic work-up: all patients were subjected to:

- 1. Full history taking.
- 2. Clinical examination.
- 3. Investigations which included: Routine lab tests (blood count, random sugar, serum creatinine) Routine chest X-ray, ECG, Liver function tests. Prothrombin time. Abdominal ultrasonography.

Inclusion Criteria: All the patients presenting with Chronic Cholecystitis (Ensuring CBD diameter < 6mm). Exclusion Criteria:Patients suffering from Acute Cholecystitis and its complications. Patients suffering from CLD.

All patients were randomly assigned for laparoscopic cholecystectomy as follows:

Group 1 (clip-less Harmonic group) included 58 cases; a Harmonic scalpel was used.

Ultrasonic shear (Olympus Keymed Sono surg version G2 220-240 V 3A. 50/60 Hz.) was used as the only working instrument during the procedure through 10 mm epigastric port, for dissection/cutting of cystic artery and duct, then gall bladder dissection from liver bed helped by grasper through right mid clavicular 5 mm port to attain complete hemo-biliary stasis, lastly the gall bladder is retrieved from the epigastric 10 mm trocars site.

Group 2 (clip group) included 56 cases; the conventional instruments were used with the application of clips. One small catheter drain was put in all cases that was removed after 24 hours. All patients were followed up with post operative treatment in the form of broad spectrum antibiotic prophylaxis, and analgesia until thei discharged from hospital.

Recording of all patients data were done, and categorized as, intra-operative perforation of the bladder and biliary spillage, intraoperative injuries, or complications, operative time, as well as post-operative complications especially drain output and its nature.

Ethical considerations and informed consent: The study protocol was approved by the local Ethical Committee, and it was explained to each patient and his/her informed consent obtained prior to entry into the study.

Statistical analysis: The results are expressed as the mean \pm SD & number (%). Statistical analysis was performed with the software SPSS Version 12, using student T. test to determine significant numeric data, using Chi Square to determine signs for non-parametric data. P value was determined as significant (P< 0.05).

Results

Results are shown in tables

TABLE1. AGE AND DURATION OF THE SURGERY							
Variables	Groups	Mean	SD	P-VALUE (t Test)			
AGE OF PTS	Group1 (n=58)	40	10	.107			
(YEARS)	Group2 (n=56)	44	12				
DURATIO	Group1	23	5				
N OF SURG. (MINUTE S)	Group2	30	5	.000			

Table 2 CONTENTS AND VOLUME OF DRAIN						
GROUP S	BLO OD	BILE	SER UM	NO O TP U	P VAL UE (chi squar e)	
Group1	2	1	47	8	.2	
Group2	3	5	43	5		
VOLUM E OF DRAIN	Grou p1	Mea n 11	SD 10		.1	
AT 24 hrs(ml)	Grou p2	15	16			

No conversion to open No cbd injury

Discussion

TABLE 3 PERFORATION OF GALL BLADDER						
GROUPS	YES	NO	P VALUE(chi square)			
Group1	2	56	.972			
Group2	2	54				

Ever since Philips Mouret performed the first videolaparoscopic cholecystectomy in Lyons, France, ¹¹ this procedure is gaining popularity day by day and has become treatment of choice and is a Gold Standard for symptomatic gallstones^{12.} The Technique has underwent various modifications since then; the most recent is use of harmonic scalpel to cut cystic artery and cystic duct.

This study clearly demonstrates that the harmonic scalpel provides complete and reliable

hemo-biliary stasis without clinically significant immediate or post operative complications.1 feasible, easily handled, and very efficient. In fact the properties intrinsic to the harmonic scalpel (cavitations and smokeless coagulation) seem to provide an advantage over electrocautery in the dissection of the bladder and may enhance performance, ^{6,10,14}. Except for the 2-3 minute interval required for cystic duct division, the use of harmonic scalpel shortens operative time. 15 Our study also showed shorter duration of surgery in group1, which was statistically significant (23 vs. 30 respectively with P value=.000)

The frequency of gall bladder perforation in our study was equal in both groups (2 vs. 2 respectively with P value=.972). Most authors denotes that harmonic clip less cholecystectomy is associated with significantly lower incidence of gall bladder perforation and bile spillage. R14,15 Not a single case of common bile duct injury was encountered in either group though various studies still report common bile duct injury. Similary in both groups, laparoscopic cholecystectomy procedure conversion to open cholecystectomy, was not indicated in any case though other studies indicate a definite conversion rate. Both of these features may be related to inclusion of only chronically inflamed gall bladders in our study.

No major post operative complications was encountered in either of the two group. Post operative bile drainage was encountered less in group1 than in group2 but it was not statistically significant (5 vs. 8 respectively with P

Value = 0.2, 11ml vs. 15ml respectively with P Value = .1) and this may be attributed to the effectiveness of harmonic scalpel in gall bladder dissection with hemobiliary stasis, with efficient closure of the Duct of Luschka thus preventing post operative bile leakage from the liver bed that may contribute to small bilomas, and the associated morbidity. Same observation was also documented in various studies ^{6,14,15,18,19,20}.

Conclusion

The Harmonic scalpel is a safe, efficient, and practical instrument to use during laparoscopic cholecystectomy especially if used as a sole working instrument, with complete hemo biliary stasis. Its application shortens the operative time and decreases accidental bile spillage.

References

- Fullum T, Kim S, Dan P, Turner PL. Laparoscopic 'dome-down' cholecystectomy with the LCS-5 harmonic scalpel. J Soc Laparoendosc Surg 2005; 9: 51–7.
- Cengiz Y, Jänes A, Grehn Å, Israelsson LA. Randomized clinical trial of traditional dissection with electrocautery versus ultrasonic fundusfirst dissection in laparoscopic cholecystectomy. Br J Surg 2005; 92: 810–3.

- Janssen IMC, Swank DJ, Boonstra O, Knipscheer BC, Klinkenbijl JHG, van Goor
- H. Randomized clinical trial of ultrasonic versus electrocautery dissection of the gallbladder in laparoscopic cholecystectomy. *Br J Surg* 2003; 90: 799–803.
- Huang X, Feng Y, Huang Z. Complications of laparoscopic cholecystectomy in China: an analysis of 39,238 cases. *Chin Med J* (Engl) 1997; 110: 704–6.
- Strasberg SM, Hertl M, Soper NJ. An analysis of the problem of biliary injury during laparoscopic cholecystectomy. J Am Coll Surg 1995; 180: 101–25.
- Nazih Salameh Amarin. Harmonic scalpel and clipless cholecystectomy. World Jounal of laparoscopic Surgery. May-Aug. 2008;1:6–8.
- Foschi Diego, Cellerino Paola, Corsi Fabio, Previde Paolo, Allevi, Raffaele, Trabucchi Emilio. Closure of the Cystic Duct by Ultrasonic Energy: An Electron-microscopic and Biomechanical Study in Man. Surgical Laparoscopy, Endoscopy & Percutaneous Techniques. 2009;19:34-38.
- Denes B, de la Torre RA, Krummel TM, Oleson LSM. Evaluation of a vessel sealing system in a porcine model. (2003) In 21st World Congress of Endourology, Moderated poster session, Endourology/Laproscopy: Laboratory & Teaching Montreal, Canada.
- Marshall Nicholas, T. Vu, D Patel. A clipless technique for laparoscopic cholecystectomy using the harmonic scalpel. ASGBI Oral presentation: Manchester on April 19th 2007 – Benign hepatobiliary section.
- Maciej Ciesielski, Maciej Michalik, Wojciech Zegarski, and Konrad Szydłowski: Ultrasonic versus electrocautery dissection in lap. chole. Wideochirurgia inne techniki małoinwazyjne. 2007;2:128–38.
- 11. Cansiz H, Guvenc MG, Sekecioglu N. Surgical approaches to juvenile nasopharyngeal angiofibroma. J Craniomaxillofac Surg. 2006;34:3-8.
- Jahangir Sarwar Khan, Hamid Hassan, Mohammad Iqbal. Laparoscopic Cholecystectomy at Rawalpindi General Hospital: A clinical practice audit. Pak Armed Forces Med J. 2010;60(4):553-6.
- Miguel A. Cuesta, Frits Berends, Alexander A.F.A. Veenhof. The invisible cholecystectomy, A trans umbilical laparoscopic operation without a scar. (2007). Surgical Endoscopy, DOI 10 . 1007/s00464 – 007 – 9588 – y. EJS, Vol. 29, No. 1, January, 201047.
- 14. Westervelt James. Clipless cholecystectomy: Bradening the role of the Harmonic scalpel (Case report), J.S.L.S. 2004;8:283–5.
- Bessa SS, Al-Fayomi TA, Katri KM, and Awad AT. Clipless laparoscopic cholecystectomy by ultrasonic dissection. J. Laparoendosc. Adv. Surg. Tech. A. 2008;18:593–8.
- Fathy O, Zeid MA, Abdullah T, Fouad A, Eleinien AA, El Hale NG. Laparoscopic Cholecystectomy: a report on 2000 cases. Hepatogastroenterology 2003; 50:967-71.
- 17. Marakis GN,Pavlidis TE, Ballas K, Aimoniotou E Psarras K, Karvounaris D. Major Complications during Laparoscopic Cholecystectomy. Int Surg 2007;92:142-6.
- 18. Leggett PL, Churchman-Winn R, Miller G. Minimizing ports to improve laparoscopic cholecystectomy. Surgical Endoscopy. 2000;14:32–36.
- Tamura Isao, Suzuki Shinichiro, Fukano Fumiyasu, Kumakiri Yutaka, and Koizumi Hiroyoshi. Clipless Iaparoscopic cholecystectomy. Yokohama Medical Journal. 2006;57:5/6:477.
- Tsimoyiannis EC. Laparoscopic cholecystectomy using ultrasonically activated coagulating shears. Surg Laparosc Endosc. 1998;8:421-424. Lijec Vjesn. 2004;126:246-50